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B U B B L E  C L U S T E R ,  C U M U L A T I V E  J E T S ,  

A N D  C A V I T A T I O N  E R O S I O N  

V. K. Kedrinskii  UDC 532.528-1-620.193.16 

I n t r o d u c t i o n .  Experiments on laboratory modeling of ultrasonic cavitation erosion described in [1] 
show that a bubbly cluster develops in a liquid interlayer between the transformer and the tested sample in 
response to the action of tensile stresses in rarefaction phases. A frame of high-speed photographic record of 
the dynamics of the cavitation zone in Fig. 1 [1] shows a typical pattern of the process. The frequency of 
horn pulsations is 20 kHz, the amplitude is 3.9 #m, and the volume of the cavitation zone is 0.226 cm 3. It 
turned out that the bubbles in the zone pulsate almost in synchronism, and their frequency differs from the 
frequency of the external field produced by the horn. 

Gas-vapor bubbles develop at so-called cavitation nuclei, i.e., heterogeneous inclusions which are almost 
always present in real liquids. The problems of their stabilization have not yet been completely solved. As an 
approach the Harvey model [2] is often used. It assumes the existence of cavitation nuclei as solid hydrophobic 
microparticles with slots inside which gas or vapor nuclei can be preserved. 

Another type of structures, which are called combinative structures, was found experimentally by 
Besov et al. [3] who showed that microbubbles 1 could "attach" to the highly uneven surfaces of solid nuclei 
2 (Fig. 2), thus ensuring stability of their suspension in a liquid. This structure also explains the effect of 
clarification of a liquid after passage of a shock wave as a result of destruction of the combinative structure 
and settling of solid nuclei free from gas bubbles. 

Numerous studies (for example, [4-9]) confirm the importance of analysis of the individual interaction 
of a bubble with a solid surface whose daznage is usually associated with the effect of shock waves and 
cumulative microjets that arise when the bubble collapses. The experimental data of [6-8] on correlation of 
the fine structure of the local damage zone with the hydrodynamic parameters of pulsation of an individual 
bubble in the cavitating liquid are of particular interest. These data indicated, in particular, the existence 
of a threshold energy barrier [7] and a monotone dependence of mass loss on the maximum bubble diameter 
Dmax, i.e., on the initial potential energy of the system Umax [8]. The energy is converted to the energy of a 
compression wave and the energy of a cumulative jet which arises during collapse of the bubble. It should be 
noted that, following [10], the amplitude of the shock wave generated by collapse of a single cavitation bubble 
is so small at the distance of the order of the initial-bubble radius that the shock wave cannot cause fracture 
of the sample. 

The data  of [8] were generalized in [11] as two relations for the mass loss per single load impulse: 

Agl ~-- 0.14 Urea.x, Ag2 ~ 3 S 3 _ �9 10 Umax, (1) 

where ~Xg is measured in milligrams and Umax is measured in joules. The first relation is used for Umax/> U. 
and the second for Umax ~ U., where U. _~ 2.16.10 -5 J. Makarov et al. believe [8] that this relation 
determines the threshold of brittle fracture. The numerical coefficients and the value of Umax were obtained 
for aluminum. 

As a rule, bubble cavitation is so intense that during its development the state of the medium and 
the parameters of the wave field are significantly changed. This naturally leads to the idea of representation 
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Fig. 1 

of a real liquid as a two-phase medium. Applications of two-phase models to various formulations of erosion 
testing were first studied in [1, 12]. 

This approach is of importance,  because, in spite of the local character of erosion effects, their frequency 
and intensity should depend on the hydrodynamic characteristics of the bubble cluster and the structure of 
the wave field in it. In this paper, we propose some approaches to the evaluation of erosion effects using 
a two-phase model of cavitating liquid and the generalization of experimental and numerical data on local 
damage of a sample by a cumulative microjet. 

S ingle  Cavi ty ,  C u m u l a t i v e  J e t s  ( E x p e r i m e n t  a n d  M o d e l s ) .  As was mentioned above, interesting 
experimental results for an incident-shock-wave-bubble-sample system were obtained by Sanada et al. [7], 
who studied for a luminum the dependences of the depth hp of the cavity formed by an impact of a cumulative 
microjet on the ampli tude Psh of the shock wave which compresses the bubble near the sample and on the 
hardness Hv of the sample material. We use these results to determine the relation between jet penetration 
and the mass loss under a single load on the sample. It will be shown below that  the frequency of action 
and its intensity can be determined only within the framework of a two-phase model of the dynamics of a 
cavitating liquid. 

The cavity depth is hp ,'., psh /Hv  over a fairly wide range of parameters. It should be noted that  in 
the classical problems of cumulative-jet penetrat ion into targets the microhardness Hv enters the condition 
of equality of pressures at the je t - target  interface and is considered a parameter responsible for dissipative 
processes: 

pi(  - v )2/2 = v 2/2 + Hv,  

where Vp and V) are the penetrat ion velocity and the jet velocity, respectively. In particular, this condition 
makes it possible to determine the min imum velocity of a cumulative jet at which the jet does not penetrate 
into the target: ~,min = ~ .  Thus, for values Hv = 14-70 MPa [7], the min imum velocity of the jet 
acting on the sample varies within 170-375 m/sec.  

The experimental data  of [7] show that  for shock-wave amplitudes psh <<. 35 MPa an aluminum sample 
remains intact for  any value of Hv within the above range: hp = 0. It is obvious that  for these values of Psh 
and bubble radius R0 = 0.85 m m  the cumulative-microjet velocity does not exceed the strength threshold 
of the target. The above data  may be interpreted as a threshold value of the initial potential energy of the 
system, which, in this case, is determined by the quantity U. -~ 0.1 J. 

In the experiments of [7], the initial volume V0 of the bubble was fixed; therefore, hp .., pshVo or 
hp ~ Um~x, which is in agreement with data  of [8]. Taking into account the character of flow transformation 
during cumulation it is reasonable to consider the dependence of hp on Um~,x/Sj, where Sj = ~r~/4 is the 
cross-sectional area of the jet. A new parameter  appears which can be estimated as follows. Using the data 
of [7] we determine the pit diameter dp as a function of the penetration depth hp: 

dp ~ 2hp/(O.06 q- 5.6- lO-3hp). (2) 
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The dimensions are given in micrometers. The  relationship between dj and dp is estimated [13] within the 
framework of the classical cumulation theory for the one-dimensional problem of an infinite incompressible 
flow over a plate: 

d i / d  p "" 1 - 2#(1 + tan #)/Tr, 

where in terms of cumulation parameters tan/~ = Vp/ (~  - Vp) = )~; $ = ~ / ~ P m ;  and pm is the density of 
the sample material (as is seen, for equal values of density, Vp = t0 /2  ). Substitution of the data on aluminum 
gives di alp~3. 

Finally, it is reasonable to assume that  the jet diameter is proportional to the maximum bubble size 
R, (or y, = R , / R o ) .  Then,  the semi-empirical dependence of the penetration depth on the basic parameters 
of the problem and on the integral of the potential energy of the system is defined by 

y* 

hp ~ 11.6 R0 ] p y 2 d y / g v  (3) 
Ymin 

(hp and ~ , / ~ m ;  p and Hv,  MPa) The coefficient 11.6 is determined from the "est data of [7]. 
For comparison the data calculated from relation (3) [7] are shown in Fig. 3 by crosses. The agreement 

is quite satisfactory. According to [13], when the target is made of soft materials, about 20% of the sample 
mass is ejected from the pit produced by a cumulative jet. If the pit is a cone, the ejected volume can be 
calculated from (2): 

  /(0.134 + 0.0125  ) 2. (4) 

In (4) h a is determined from (3). Under the assumption that  precisely this mass governs the erosion 
effect (mass loss by the sample) for plastic materials, relation (1) allows one to estimate numerically the 
damage dynamics, if the density of the bubbles per unit area and their pulsation frequency are known. These 
parameters are found by analysis of the initial state of microinhomogeneities in the liquid and by solution of 
the problem of a cavitation cluster, respectively. 

It should be noted that  the above-mentioned threshold is not a single constraint in estimation of the 
erosion effect. The second basic constraint is the length of a cumulative jet. Following [14], the penetration 
depth Lp of a cumulative jet, the jet length Lj and density pj, and the target-material density pro, are related 
by L v = )tLj. 

Thus, since a cumulative jet penetrates into a liquid only to the depth equal to its length (~ = 1), 
the presence of an interlayer between the cavitation bubble and the sample wall reduces considerably the 
effectiveness of jet action. As is clear from Kurbatskii 's calculation of the axisymmetrical problem [15] of the 
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collapse of an originally spherical hollow cavity near a solid wall, a microjet forms near the initial position of 
the center of the bubble even when the interlayer thickness is L = 0.5R,,=. The jet length is of the order of 
bubble half-radius (Lj = L) when the distance to the bubble is about three jet lengths. Although the velocity 
is fairly high (greater than 180 m/sec),  such a jet cannot affect the sample. 

When a bubble is in contact with a surface, a jet with length L i ~_ Rm~ and diameter d i ~- 0.2 Rm~x 
and with an almost uniform velocity field is generated. Figure 4 shows the dynamics of the bubble profile (a) 
and the particle trajectories 1-6 (b) for various times. Profile 2 corresponds to a dimensionless time of 0.8125, 
and profile 7 to 1.0906, and the time of collapse of a hollow cavity in an unbounded liquid is 1.0929 (1 is the 
initial profile). The velocity of the jet tip at the moment of contact with the lower boundary can be estimated 

as Vj ~_ 1.3 �9 1 0 4 ~ ,  m/sec, if the pressure and density are measured in megapascals and kilograms per 
cubic meter, respectively. Thus, the above strength threshold for the contact of a bubble with a surface can 
be overcome for the softest material only when the external pressure p is not lower than 0.2 MPa. It can be 
shown that the kinetic energy of jets is only 0.4% of Umax, which exceeds markedly the data of [8] (0.01%). 

As to the external field, the above reasoning dealt with hydrostatics, and the bubble shape before 
callapse was arbitrary. Meanwhile, in practice, a cavitation bubble grows from a nucleus n~ar the wall in the 
ultrasonic-field rarefaction phase. At the moment of maximum expansion the bubble takes the shape of an 
ellipsoid whose lower part is distorted versus the initial position of the nucleus. The bubble can move some 
distance away from the wall. Another feature of the real process is that the horn-induced external field is 
significantly distorted during the development of a cavitation zone because of energy consumption for its 
formation. 

B u b b l e  C lus t e r .  As was mentioned above, erosion results from the collective action of a cavitation 
cluster. The dynamics of this action determines the characteristic collapse times, the dynamics of the pressure 
field in the cavitation zone, and the flow structure in the vicinity of an individual bubble near the solid wall. 
To make use of the above estimates, one should know how to calculate the above characteristics within the 
framework of a two-phase mathematical model. 

Initial State of Liquid. Calculations of cavitation should be based on reliable data on the initial 
parameters of gas content: the volume concentration k0 and the nucleus size R0. To study the distribution of 
microinhomogeneities, we performed experiments with distilled water and fresh and settled tap water using 
the Malvern Instruments M 6.10 equipment with a magnetic mixer [11]. The measurements used the method 
of light diffraction by microinhomogeneities in liquids. The results are summarized in Tables 1 and 2, where 
t* is the time of settling, k* is the volume concentration of nuclei, R* is the size of a nuclei, and /~ is the 
content of bubbles with radius R* in the spectrum. 

Table 1 presents data on the dynamics of gas content during settling of water, including the recorded 
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TABLE 1 

Medium 

Tap 

water 

Distilled 

water 

t*, h 

0 

2 

17 

21 

k* R',  #m 

2.8.10 -4 40-120 

8- 10 -6 1.2-15 

1 �9 10 -6 1.2-10 

< 1 . 1 0  - 6  "1 .2 -11  

< 1 �9 10 -6 1.2-13 

< 1.10 -6 1.2-3.4 

TABLE 2 

R, #m 

11.1 0.1 
9.6-8.3 10.7 
7.2--6.2 33.4 
5.3-4.6 31.1 
4-3.0 18.6 

2.6 2.3 
2.2 1.3 
1.9 0.8 
1.6 0.6 
1.4 0.3 

~,% 
Tap water Distilled water 

0.2 
1.7 
15 

33.9 
30 

13.8 

spectrum of nucleus radii R*. The size distribution of cavitation nuclei for settling samples in percent is given 
in Table 2. One can see that the upper bound of the spectrum for tap water is considerably higher, and there 
are regions of intersection of the spectra. In distilled water, particles with size of 1.4-2.2 #m amount to more 
than 90% of the volume content of microinhomogeneities permitted by the method. 

It should be noted that the resolution limit of the volume concentration for the equipment is 10 -6 , and 
does not permit one to obtain quantitative data for the number of particles in the distribution, because it is 
difficult to select a standard test specimen. An estimate of the number of particles was obtained by analysis 
of the tracks of diffraction spots of microinhomogeneities which move in a laser beam because of natural heat 
convection. 

The total number of microinhomogeneities of any nature in distilled-water sample reaches 
105_106 cm -3. 

Two-Phase Model. Formulation of the Problem. We shall study the development of cavitation in thin 
liquid layers within the framework of a simple scheme which enables one to consider several variants of 
axisymmetric and plane formulations: an immovable rigid sphere with radius a is placed inside a hollow 
sphere (horn) with radius aex which is filled with water and oscillating with frequency f .  The clearance 6 
between them is controlled by shifting their centers L. 

Cavitating flow is described by the laws of conservation of mass and momentum for average 
characteristics and is closed by the relations between the mean density p, the volume concentration of the gas 
phase k, and the mean pressure p. The last two characteristics are related by the Rayleigh type equation for 
bubble concentration in a monodispere mixture. The governing system of equations describing the flow in a 
cavitating liquid is written as 

-2 02P 02 k 
A p -  c o Ot 2 = -poko Ot 2 ; (5) 

(ok, 2 02kOt 2 = 3kl/a(pok-7 - p ) p o l R o  2 + \~-~] (6k) -1. (6) 

Here the subscript 0 refers to initial values; k = (R/R0)3; and R is the current radius of the cavitation 
bubble. This is a complete system for two basic characteristics of a cavitating medium (k,p). Under a series 
of assumptions Eq. (5) can be significantly simplified. 

Ignoring the gas pressure in the bubbles and the inertial term in (6), which is justified for the rarefaction 
zone and acceptable for almost the entire range of bubble collapse, we obtain an approximate equation for 
the dynamics of the volume concentration: 

02k ,,~ _3k1/3 ppol Ro 2. 
Or2 - 
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Substituting it into (5) and assuming that  the liquid component is incompressible, we obtain the equation 

(3k0/P )kl/3p. ( 5 9  

Let us introduce a new spatial variable 7/= ( r  (( = akl/6 and a = ~ )  assuming that  >> 
Ipr .l and k >> Ir kr/6[ (the subscripts denote the corresponding partial derivative, for example p~o = 
02p/0712); Eq. (5') can be reduced to the form [1,161 

p. (7) 

In our case of the axisymmetric problem of the development of cavitation in a narrow clearance between 
two spherical surfaces, the solution of (7) is represented as a combination of the Bessel functions K,,+l/2((r ) 
and the Legendre polynomials P,,(cos 0) and becomes 

p = ~ B , r -1 /2g ,+l]2( ( r )Pn(cos  0). .(8) 

We shall restrict ourselves to two terms of the series. Then, the approximate solution of (7) which 
determines the analytical dependence p(k) is of the form 

P ----- x / ~ e x p  ( - r  + BI(1 + 1/( r )  cos O]. (9) 

The coefficients of Eq. (9) are found from the boundary conditions 

0p 
- - = 0  for r = a, n .  V p  = --pofl(t) for r = r, .  0r 

Here n is a unit normal to the surface aex; fl(t) = -nbw 2 sin(wt) is the acceleration of the surface, and b is 
the amplitude of the acceleration. 

The pressure in the cavitating zone on the horn surface (r = r*) is finally determined by the relation 

P ---- P0 3 L p o b r *  OJ2 sin(wt)[1 - (2 + Ca)r,~(1 + Ca)a]/g, (10) 

where 

N = cos"t{r,(1 + (r,)[1 + (1 + (a)2]/a(1 + (a) - [1 + (1 + (r,)2]} + sin-y tan 9(1 + ( r , ) ;  

cos  = (a x - L + Oex; = - L sin 2 0 - L o o s e .  

The substitution of Eq. (10) into Eq. (6) reduces the problem to the solution of a second-order ordinary 
differential equation, in which the spatial coordinate r functions as a parameter. The  angle 6 is reckoned from 
the center line, the coordinate origin is placed at the center of the sphere a, and r ,  is the coordinate of the 
point on a sphere with radius aex. 

Analysis of  the Calculation Results. According to the above data, the volume concentration k0 was 
considered for values of 10-6-10 -12. All calculations were performed for tt0 = 1 /zm. Generally speaking, 
with allowance for the above experimental data on the spectrum of nuclei size system, (5) and (6) should be 
complicated: an individual equation of the type of Eq. (6) should be written for each part of the spectrum. 
However, as is shown in [12], an original polydisperse distribution structure rapidly becomes monodisperse in 
intense supersonic fields (Fig. 5). The calculation results for the expansion and collapse phases for bubbles 
(a) with various initial sizes (from 6 for R1 to 2.88/~m for R10) obtained within the framework of a two-phase 
model and the pressure dynamics in the cavitating zone (b) are given in Fig. 5. The  synchronous collapse of 
the bubbles indicates that  the bubbles became equal in size, at least, at the moment  the maximum size is 
reached. 

In the present paper, we a t tempt  to simulate the experimental result of [5] using the above estimates 
of erosion damage. In this case, our scheme of two spheres should have the following geometric parameters: 
aex = 20 cm, a = 1 cm, displacement of the centers L = 18.95 cm, and the clearance between the horn and 
the samples 5 = 0.5 mm.  The frequency was 14.5 kHz. 
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A study of the fine structure of the pressure profile as a function of k0 shows that an increase in its 
values from 0 or 10 -12 to 10 -6  with which the field amplitude decreases appreciably (although the wave profile 
remains unchanged) results in the gradual formation of the load pattern "permitted" by the cavitating liquid. 
In the cavitating liquid the vast majority of horn-induced waves is absorbed, and the loading rate increases 
appreciably. This gives rise to irregular peak loads with a fairly high amplitude in the clearance. The behavior 
and parameters of the cavitation bubble change abruptly as compared with its "single" dynamics [11]. 

Let us use the numerical interpretation (1) of the experimental data of [8] on the mass loss by the 
sample per single load impulse and try to relate the erosion rate to the potential energy of the bubble Um~x. 
It should be noted that these values are due to the fatigue effects occurring under long cyclical loading of the 
sample; therefore, the estimates for a single load may prove to be strongly averaged. 

The potential energy Umax is determined by the in tegra l /pdv ,  and summation of it over all pulsations 
i ,  

gives the dynamics of rates of the mass loss Wt*. The calculation results for a vibration amplitude of b = 25 #m 
and a value of k0 = 10 -s  averaged over the entire current time interval indicate that in the course of time 
the value Wt* tends to stabilization at a level of about 0.1 mg/sec. Taking into account the closeness of the 
microhardness values of the samples Hv = 140 MPa [8] and Hv = 133 MPa [5], these calculations can be 
extended to the experiments of [5] with soft cermet materials with certain caution (the calculation is performed 
for tens of milliseconds but extended to minutes). From the function Wt one can easily estimate the dynamics 
of the mass loss W(t), which, following [5], is close to the linear function W _~ 2(t - 5)/3 (t in minutes and 
W in cubic millimeters) over a time interval of 10-30 min. 

Figure 6 shows a typical dynamics of the surface profile subjected to erosion for 2, 6, and 18 rain with 
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various scales of vertical erosion depth [5]. The data on the dynamics of the volume loss W(t) and the rate of 
losses Wt for the experiment are presented in Fig. 7. The dotted curves and crosses show the estimated values 
of W*(t). The estimate of the value W~* for t = 40 rain obtained under the above assumptions is shown by 
an asterisk in a circle. Evidently, the order of the values is approximately the same. 

The analysis performed shows that the two-phase model combined with approaches of the classical 
theory of cumulation allows estimation of erosion effects based on the extension of test results with accuracy 
to an order of magnitude, without considering the complete problem of the cavitation fracture of the samples. 
The calculation of the evolution of cavitation bubbles at microinhomogeneities [15] with allowance for the 
transformation of the pressure field in .the cavitating liquid shows that there is an optimum position of the 
nuclei that determines, from the viewpoint of cavitation erosion, an optimal relation between the velocity and 
length of the cumulative jet and the distance to the wall. 
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